

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Wednesday

Probability & Statistics 1

24 MAY 2006 Afternoon

1 hour 30 minutes

4732

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

© OCR 2006 [K/102/2696]

Registered Charity Number: 1066969

[Turn over

- 2
- Some observations of bivariate data were made and the equations of the two regression lines were found to be as follows.

y on x: y = -0.6x + 13.0x on y: x = -1.6y + 21.0

	x on y : $x = -1.0y + 21.0$	
	(i) State, with a reason, whether the correlation between x and y is negative or positive.	[1]
	(ii) Neither variable is controlled. Calculate an estimate of the value of x when $y = 7.0$.	[2]
	(iii) Find the values of \bar{x} and \bar{y} .	[3]
2	A bag contains 5 black discs and 3 red discs. A disc is selected at random from the bag. If it is replaced in the bag. If it is black, it is not replaced. A second disc is now selected at rando the bag.	
	Find the probability that	
	(i) the second disc is black, given that the first disc was black,	[1]
	(ii) the second disc is black,	[3]
	(iii) the two discs are of different colours.	[3]
3	Each of the 7 letters in the word DIVIDED is printed on a separate card. The cards are arran row.	iged in a
	(i) How many different arrangements of the letters are possible?	[3]
	(ii) In how many of these arrangements are all three Ds together?	[2]
	The 7 cards are now shuffled and 2 cards are selected at random, without replacement.	
	(iii) Find the probability that at least one of these 2 cards has D printed on it.	[3]
L	(i) The random variable X has the distribution B(25, 0.2). Using the tables of cumulative b probabilities, or otherwise, find P($X \ge 5$).	pinomial [2]
	(ii) The random variable Y has the distribution B(10, 0.27). Find P(Y = 3).	[2]
	(iii) The random variable Z has the distribution B(n, 0.27). Find the smallest value of n s $P(Z \ge 1) > 0.95$.	such that [3]

5 The probability distribution of a discrete random variable, *X*, is given in the table.

x	0	1	2	3
P(X = x)	$\frac{1}{3}$	$\frac{1}{4}$	р	q

It is given that the expectation, E(X), is $1\frac{1}{4}$.

- (i) Calculate the values of p and q.
- (ii) Calculate the standard deviation of *X*.

4732/S06

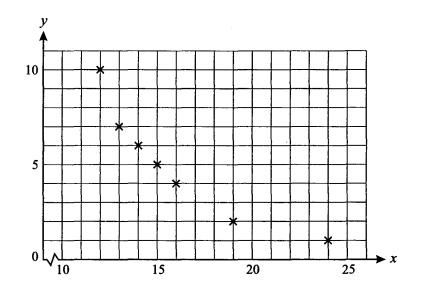
[5]

[4]

1

2

3


4

6 The table shows the total distance travelled, in thousands of miles, and the amount of commission earned, in thousands of pounds, by each of seven sales agents in 2005.

Agent	A	В	C	D	E	F	G
Distance travelled	18	15	12	14	16	24	13
Commission earned	18	45	19	24	27	22	23

- (i) (a) Calculate Spearman's rank correlation coefficient, r_{s} , for these data. [5]
 - (b) Comment briefly on your value of r_s with reference to this context. [1]
 - (c) After these data were collected, agent A found that he had made a mistake. He had actually travelled 19 000 miles in 2005. State, with a reason, but without further calculation, whether the value of Spearman's rank correlation coefficient will increase, decrease or stay the same.
 [2]

The agents were asked to indicate their level of job satisfaction during 2005. A score of 0 represented no job satisfaction, and a score of 10 represented high job satisfaction. Their scores, y, together with the data for distance travelled, x, are illustrated in the scatter diagram below.

- (ii) For this scatter diagram, what can you say about the value of
 - (a) Spearman's rank correlation coefficient, [1]
 - (b) the product moment correlation coefficient?

[Questions 7 and 8 are printed overleaf.]

4732/S06

[1]

7 In a UK government survey in 2000, smokers were asked to estimate the time between their waking and their having the first cigarette of the day. For heavy smokers, the results were as follows.

Time between waking and first cigarette	1 to 4 minutes	5 to 14 minutes		30 to 59 minutes	At least 60 minutes
Percentage of smokers	31	27	19	14	9

Times are given correct to the nearest minute.

- (i) Assuming that 'At least 60 minutes' means 'At least 60 minutes but less than 240 minutes', calculate estimates for the mean and standard deviation of the time between waking and first cigarette for these smokers.
- (ii) Find an estimate for the interquartile range of the time between waking and first cigarette for these smokers. Give your answer correct to the nearest minute. [4]
- (iii) The meaning of 'At least 60 minutes' is now changed to 'At least 60 minutes but less than 480 minutes'. Without further calculation, state whether this would cause an increase, a decrease or no change in the estimated value of
 - (a) the mean,
 (b) the standard deviation,
 (c) the interguartile range.
- 8 Henry makes repeated attempts to light his gas fire. He makes the modelling assumption that the probability that the fire will light on any attempt is $\frac{1}{3}$.

Let X be the number of attempts at lighting the fire, up to and including the successful attempt.

(i) Name the distribution of *X*, stating a further modelling assumption needed. [2]

In the rest of this question, you should use the distribution named in part (i).

- (ii) Calculate
 - (a) P(X=4), [3]
 - (b) P(X < 4). [3]
- (iii) State the value of E(X). [1]
- (iv) Henry has to light the fire once a day, starting on March 1st. Calculate the probability that the first day on which fewer than 4 attempts are needed to light the fire is March 3rd.

Module S1 (4732) May 2006 Mark scheme. Post-Standardisation draft Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise 2 sfs only once in paper.

				or add > 5 out of 7 correct prods
				or add \geq 5 out of 7 correct prods M1: all correct
(iii)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1M1		M1:1- prod or 1/ $^{7}C_{2}$ or 1- $^{4}C_{2}$ / (or Ps) or add 3 prods or add 2 correct prods or $^{3}C_{2}$ / $^{7}C_{2}$ or $^{3}C_{1}x^{4}C_{1}$ / $^{7}C_{2}$
	$\frac{2(!)}{=60}$	A1	2	or 120 seen or $\dots \div 2(!)$ alone
(ii)		M1		M1: 5! seen (not part of a C) or 5 x 4!
5(1)	$\frac{71}{3! \times 2(!)} = 420$	A1	3	M1: $/!/(a ractorial); or \div (5! x 2(!))$ M1: all correct
Total 3(i)	7!	7 M1M1		M1: 7!/(a factorial); or ÷ (3! x 2(!))
Total	$= \frac{225}{448} \text{ or } 0.502 \ (3 \text{ sfs})$	A1 7	3	
(iii)	$\frac{3}{8} \mathbf{x}^{5} \mathbf{x}^{8} + \frac{5}{8} \mathbf{x}^{3} \mathbf{x}^{7}$	M1M1	_	M1: one correct prod or add any two prods M1: all correct
	$= \frac{265}{448} \text{ or } 0.592 (3 \text{ sfs})$	A1	3	
(ii)	$5/_8 \mathbf{x}^{4}/_7 + 3/_8 \mathbf{x}^{5}/_8$	M1M1	-	M1: one correct prod or add any two prods M1: all correct
2(i)	⁴ / ₇ or 0.571 (3 sfs)	B1	1	
	In qus 2 & 3 "prod" mean		of tv	vo probabilities"
Total	x - 5; $y - 10$	AIAI 6	3	Anow without bars
(iii)	y = -0.6(-1.6y + 21) + 13 or similar $\bar{x} = 5, \ \bar{y} = 10$	M1 A1A1	3	Obtain correct eqn in 1 variable. Allow 1 num'l error Allow without bars
		A1	2	·····
(ii)	$ \begin{array}{l} x = -1.6 \text{ x } 7.0 + 21 \\ x = 9.8 \end{array} $	M1	··- * - ·	Sub $y=7.0$ in 2^{nd} eqn. Allow 1 sign error If sub in both must choose 2nd
	equn or x-value or reg coeff or B or -0.6) is negative	B1	1	
1(i)	Negative, because (grad or coeff of x in 1 st equal or x value or reg coeff or B or 0.6)			Neg because x incr & y decr

5(i)	$\frac{1}{3} + \frac{1}{4} + p + q = 1$ oe	B1		
	$0 \mathbf{x}^{1}/_{3} + 1 \mathbf{x}^{1}/_{4} + 2p + 3q = 1^{1}/_{4}$ oe	B1		
	aqualiza coeffs, ag mult agn (i) by 2 or 3	M1		allow one error ft their equips
	equalize coeffs, eg mult eqn (i) by 2 or 3 Or make p or q subject of (i) or (ii)	1111		allow one error. ft their equns subst or subtr not nec'y
	$p = \frac{1}{4}, q = \frac{1}{6}$ oe	A1A1	5	subst of subtraction for thee y
- · - · - · - · -				
(ii)	$\Sigma x^2 p$ (not /4 or /3 etc) (= $2^3/_4$)	M1		\geq 2 non-zero terms correct. dep +ve result
	$-(1^{1}/_{4})^{2}$	M1		indep if +ve result
				or $\Sigma(x-1^{1}/_{4})^{2}p$
				$(\geq 2 \text{ (non-0) terms correct}): M2$
	1.1075 13/	A 1		ft (i) $(0 \le p, q \le 1)$ or letters p, q both M1s
	$= 1.1875$ or $1^{3}/_{16}$ oe	A1 B1f	4	cao don 1st M1 & $((\pm v_0 n_0))$ og /2.75 = 1.66
Tatal	$sd = \sqrt{(their \ 1.1875)} = 1.09 \ (3 \ sfs)$	<u> </u>	4	dep 1st M1 & $(+ve no.)$ eg $\sqrt{2.75} = 1.66$
Total 6(i)(a)	Ranks: 2 4 7 5 3 1 6 6 4 1 3 5 7 2	M1		> 5 ranks correct in each set
0(1)(a)	7 1 6 3 2 5 1 6 4 1 3 7 2 7 1 6 3 2 5 4 1 7 2 5 6 3 4	A1		all correct
	Σd^2	M1		dep ranks attempted even if opp orders,
	(= 60)			allow arith errors
	$r_{\rm s} = 1 - \frac{6 \times 60}{7 \times 48}$	M1		Correct formula with $n = 7$, dep 2^{nd} M1
	/×48			calc <i>r</i> for ranks:
				$S_{xx} = S_{yy} = 140 - 28^2/7$. $S_{xy} = 110 - 28^2/7$
				(= 28) $(= -2)$
				corr subst in one corr <i>S</i> (any version):M1
				corr subst in $r = S_{xy} / \sqrt{S_{xx}S_{yy}}$:M1
	$= -\frac{1}{14}$ or -0.071 (3 dps)	A1	5	
				-0.07 without wking: M1A1M2A0
				No mks unless $ r_s \leq 1$
(b)	Little (or no) connection (agreement,			ft their r_s
	rel'nship) between dist and commission			Must refer to context.
	Allow disagreement			Not "little corr'n between dist and com"
		B1ft	1	not "strong disagreement"
				Ignore other comment
(c)	Unchanged. No change in rank	B1B1	2	indep
(ii)(a)	=_1	B1	1	cao
- · - · - · - · - ·				
(b)	Close to -1 or, eg ≈ -0.9	B1	1	not referring to "corr'n" rather than r
				allow "neg", not neg corr'n or neg skew
Total		10		
Total		10		
1				

7(i)				Correct (149.5)	With 150	Tot = 2000
/(1)	Midpoints attempted ≥ 2 classes	M1				
	$\sum xf/100 \text{ or } \sum xf/\sum f \text{ attempted } \ge 2 \text{ terms}$ x within class, not class width	M1		2720.5/100	2725/100	Allow Ms
	Mean = 27.2 (to 3 sfs) (not 27.25)					& poss As
	art 27.2 from fully correct wking	A1		27.2	27.25	
	$\Sigma x^2 f$ or $\Sigma (x - \overline{x})^2 f \ge 2$ terms	M1		240702.25	242050	
	$\sqrt{(\Sigma x^2 f/100 - \overline{x}^2)}$ or $\sqrt{((\Sigma x - \overline{x})^2 f/100)}$ or $/\Sigma f$			40.82 allow class width	40.96 s for 2nd M1	only
	fully corr method, not \sqrt{neg}	M1			5 101 2110 1111	omy
	= 40.5 to 41.1 (3 sfs)	A1	6			
(ii)	Recog LQ in 1^{st} class <u>&</u> UQ in 3^{rd} class	B1				
	Graph: Interp:					
	Attempt 25(.25) th value $LQ = 3.0$ to 4.3 Attempt 75(.75) th value $UQ = 27$ to 29	M1		both nec'y		
	• • • • •					
	Subtract IQR = 23 or 24 or 25	M1 A1	4	dep B1or M1 integer. dep M2		
- · - · · · · · · · · · · · · · · · · · · ·		B1				
(iii)(a) (b)			1 1	Ignore "probably" etc		
(c)	No change	B1 B1	1	ignore p	roouory etc	
Total			13			
8(i)	Geometric. Each attempt (or result or try) indep	B1 B1	2	In context. Not "events,. trials, outcomes". Ignore _extra		
				$(^{2}/_{3})^{2}x^{1}/_{3}$ or $(^{2}/_{3})^{4}x^{2}$		
(ii)(a)	$(^{2}/_{3})^{3} \mathbf{x}^{1}/_{3}$	M2		allow other nu	merical "p"	(0≤ <i>p</i> ≤1):M1
	$= \frac{8}{81}$ or 0.0988 (3 sfs)	A1	3			
(b)	$(^{2}/_{3})^{3}$	M1		$not (^{2}/_{3})^{3} \times \dots$	2 1	
	$(13)^{(13)} (1 - (2/3)^3)^{(13)}$	M1		or $\frac{1}{3} + \frac{2}{3}x^{1}/_{3} + \binom{2}{1-\binom{2}{3}}^{4}$ or $1-\binom{4}{3}$	$(3)^{2}x^{1}/3$	M2 M1
				or 3 terms, with 2		M1
				or 3 correct terms	+ 1 extra	M1
				or " p " + " qp " + " qp "		M1
				or $1 - \text{sum of } 3 \text{ c}$	orrect terms means num v	M1 value not ¹ /2
+	$= \frac{19}{27}$ or 0.704 (3sfs)	A1	3	<i>P</i>		
(iii)	3	B1f	1	or ¹ /" _p "		
(iv)	$1 - \frac{19}{27}$ (1 - 0.7037) or 0.2963	M1		ft (b) for M1M1 r		
	$\begin{array}{c} 1 - \frac{19}{27} \\ \binom{8}{27}^2 x \frac{19}{27} \end{array} \begin{array}{c} (1 - 0.7037) \text{ or } 0.2963 \\ 0.2963^2 x \ 0.7037 \end{array}$	M1		Allow figs rounde	ed to 2 sfs fo	r M1M1
	$= \frac{1216}{19683}$ = 0.0618 (3 sfs)	A1	3	cao. allow art 0.0	618 or 0.061	7
Total			12			
	Total 72 marks					

Total 72 marks